An extension of Picard’s theorem for meromorphic functions of small hyper-order
نویسنده
چکیده
A version of the second main theorem of Nevanlinna theory is proved, where the ramification term is replaced by a term depending on a certain composition operator of a meromorphic function of small hyper-order. As a corollary of this result it is shown that if n ∈ N and three distinct values of a meromorphic function f of hyper-order less than 1/n have forward invariant pre-images with respect to a fixed branch of the algebraic function τ(z) = z+αn−1z + · · ·+ α1z 1/n + α0 with constant coefficients, then f ◦ τ ≡ f . This is a generalization of Picard’s theorem for meromorphic functions of small hyper-order, since the (empty) pre-images of the usual Picard exceptional values are special cases of forward invariant pre-images.
منابع مشابه
Uniqueness of meromorphic functions ans Q-differential polynomials sharing small functions
The paper concerns interesting problems related to the field of Complex Analysis, in particular, Nevanlinna theory of meromorphic functions. We have studied certain uniqueness problem on differential polynomials of meromorphic functions sharing a small function. Outside, in this paper, we also consider the uniqueness of $q-$ shift difference - differential polynomials of mero...
متن کاملNevanlinna theory for the q-difference operator and meromorphic solutions of q-difference equations
It is shown that, if f is a meromorphic function of order zero and q ∈ C, then m „ r, f(qz) f(z) « = o(T (r, f)) (‡) for all r on a set of logarithmic density 1. The remainder of the paper consist of applications of identity (‡) to the study of value distribution of zero-order meromorphic functions, and, in particular, zero-order meromorphic solutions of q-difference equations. The results obta...
متن کاملAhlfors’ contribution to the theory of meromorphic functions
This is an expanded version of one of the Lectures in memory of Lars Ahlfors in Haifa in 1996. Some mistakes are corrected and references added. This article is an exposition for non-specialists of Ahlfors’ work in the theory of meromorphic functions. When the domain is not specified we mean meromorphic functions in the complex plane C. The theory of meromorphic functions probably begins with t...
متن کاملOn uniqueness of meromorphic functions sharing five small functions on annuli
The purpose of this article is to investigate the uniqueness of meromorphic functions sharing five small functions on annuli.
متن کاملFive-value rich lines, Borel directions and uniqueness of meromorphic functions
For a meromorphic function $f$ in the complex plane, we shall introduce the definition of five-value rich line of $f$, and study the uniqueness of meromorphic functions of finite order in an angular domain by involving the five-value rich line and Borel directions. Finally, the relationship between a five-value rich line and a Borel direction is discussed, that is, every Borel direction of $f$ ...
متن کامل